Could The Energy Crisis Power A Renewable Future For The Indoor Farming Industry?

 

Image sourced from LettUs Grow

 

Editor’s Note: Volatile energy prices are causing trouble for CEA operations across the globe, as unprecedented circumstances continue to push prices higher. As we know, one of CEA’s main issues (from an economical as well as ecological standpoint) is the high level of energy consumption it often necessitates. This long-read takes a discerning look at the current status quo of energy use in CEA, and argues that this crisis point is the perfect opportunity for sustainable energy reform for the industry. 



CONTENT SOURCED FROM LETTUS GROW

Written By India Langley

People and businesses across the UK and Europe have been watching in apprehension as energy prices continue to soar. These skyrocketing prices result from a perfect storm: rising demand from lifted Covid restrictions, reduced gas stores after a relatively windless summer, record increase in global gas prices, and the war in Ukraine. Reduced gas flow from Russia to the EU, which is as much as 50% reliant, could push prices up around the world; with the wide-reaching impacts felt by individuals and businesses alike. 

This price instability has sent shock-waves through the CEA community, with a few even questioning its viability. But we don’t think this is the end, far from it. While talking about the bright side of a crisis may seem crass, this could be the driving force for changes akin those seen after the 1970’s twin oil shocks. “Necessity is the mother of invention”, as they say, and we can see some incredible opportunities for positive change that won’t just help our industry further thrive in the medium-term, but could help support the renewable energy transition too. 

In this long-read, we’ll explore the energy landscape we’re working in and what the big opportunities for innovation are. After all, innovation is what the CEA industry does best! (If you’re looking for advice on what to do on your existing farm during this crisis, please read “How can UK vertical farmers power through the energy crisis?”)

Energy usage in CEA 

Stock image of vertical farm

The controlled environment agriculture (CEA) industry is highly sensitive to the price of energy, especially electricity and natural gas. CEA is a catch-all name for methods of growing crops indoors while controlling elements of the environment such as irrigation, temperature, humidity or light. The term includes greenhouses, polytunnels, plant factories, vertical farms and container farms. 

Despite CEA’s higher output of produce, and reduced resource, pesticide and land use, a common and understandable critique is that artificially controlling the climate and often replacing sunlight with LEDs requires a substantial amount of energy. Even when prices are stable, energy can be a large proportion of business expenditure. Could this crisis change CEA’s main trade-off, improved productivity and reduced resource consumption for higher energy bills?

For greenhouses that are operating all year-round, energy is usually the second largest overhead after labour. Most of this is spent on gas-fired heating and, in some facilities, using electric lighting to supplement sunlight. The sudden rise in gas prices has severely knocked the traditional greenhouse industry, with many gas-heated greenhouses delaying planting, changing to less energy intensive crops, taking a hit on productivity, or even not planting at all. The Dutch mega greenhouses are using as little as 50% average heat input and this is expected to drop their productivity around 10%. The NFU estimates a 50% drop in UK glasshouse production. At the time of writing, between 60-70% of UK greenhouses in Hertfordshire’s Lea Valley, known as London’s Salad Bowl, are still yet to plant this year. Suffolk’s largest tomato producer, Sterling Suffolk, even ceased production indefinitely, though they were saved weeks after closing

With plant factories, vertical farms and container farms, electricity rather than gas is the primary energy source. Lighting, temperature, ventilation, irrigation and other operations all typically run on electricity. Lighting is usually the biggest energy expenditure, reaching up to 70% of energy use in some facilities. Electricity’s cost from the grid is also closely tied to the price of fossil fuels. The electricity price climb has raised concerns in the vertical farming community about the future viability of the industry. Unfortunately, if we’ve learned anything from this crisis, it’s that the price of fossil-fuels is more volatile than previously thought. It begs the question: could energy from the grid become cost-prohibitive for some CEA businesses? 



PREVIOUS

This Platform Matches Farmers & Landowners To Boost Local Food Systems In Sweden

NEXT

This New Vertical Farming Startup Secured Funding From America’s Largest Leafy Green Producer. Here’s How.